Ice Position (Again)

Micah Blake McCurdy hockeyviz.com

Ottawa Hockey Analytics Conference March 27, 2021

The Idea

Can players affect their team results by gaining or losing territory?

(ロ)、(型)、(E)、(E)、 E) の(()

The Idea

Can players affect their team results by gaining or losing territory?

Not really.

The Idea

Can players affect their team results by gaining or losing territory?

 $\underbrace{\text{How much}}_{\text{territory}?}$ do players affect their team results by gaining or losing

 $\underline{\mathsf{How}\ \mathsf{much}}\ \mathsf{do}\ \mathsf{players}\ \mathsf{affect}\ \mathsf{their}\ \mathsf{team}\ \mathsf{results}\ \mathsf{by}\ \mathsf{gaining}\ \mathsf{or}\ \mathsf{losing}\ \mathsf{territory?}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

► A fair bit!

 $\underline{\mathsf{How}\ \mathsf{much}}\ \mathsf{do}\ \mathsf{players}\ \mathsf{affect}\ \mathsf{their}\ \mathsf{team}\ \mathsf{results}\ \mathsf{by}\ \mathsf{gaining}\ \mathsf{or}\ \mathsf{losing}\ \mathsf{territory}?$

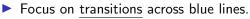
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A fair bit!

(I think it might be more)

► Focus on transitions across blue lines.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Exits and exit defence

Focus on transitions across blue lines.

- Exits and exit defence
 - INTO the neutral zone

- Exits and exit defence
 - INTO the neutral zone

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Entries and entry defence

Focus on transitions across blue lines.

- Exits and exit defence
 - INTO the neutral zone
- Entries and entry defence
 - OUT OF the neutral zone

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Logistic Regression with terms:

Five skaters trying to make the transition happen.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Five skaters trying to prevent it

Logistic Regression with terms:

Five skaters trying to make the transition happen.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Five skaters trying to prevent it
- The score

Logistic Regression with terms:

Five skaters trying to make the transition happen.

- Five skaters trying to prevent it
- The score
- The time in the game

Logistic Regression with terms:

Five skaters trying to make the transition happen.

- Five skaters trying to prevent it
- The score
- The time in the game
- Some interactions between score and time

Logistic Regression with terms:

- Five skaters trying to make the transition happen.
- Five skaters trying to prevent it
- The score
- The time in the game
- Some interactions between score and time
- Team, as a cheap proxy for coaching systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Model Target

Exit Model: an observation every second the puck <u>could</u> enter the neutral zone.

- Target variable 1 if it does, 0 if it does not.
- In 19-21:
 - 92k transitions
 - 3.7m attempts
 - ► ≈ 2.5% success.
- Entry model: an observation every second the puck could <u>leave</u> the neutral zone.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

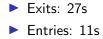
- Target variable 1 if it does, 0 if it does not.
- In 19-21:
 - 101k transitions
 - 1.7m attempts
 - ► ≈ 6.1% success.

Model Target

Exit Model: an observation every second the puck <u>could</u> enter the neutral zone.

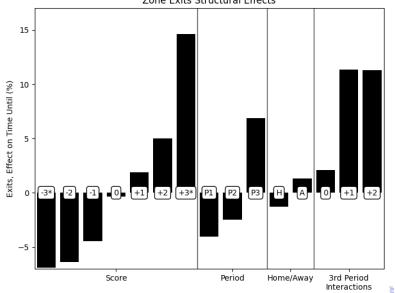
- Target variable 1 if it does, 0 if it does not.
- In 19-21:
 - 92k transitions
 - 3.7m attempts
 - \blacktriangleright \approx 2.5% success.
- Entry model: an observation every second the puck could leave the neutral zone.
 - Target variable 1 if it does, 0 if it does not.
 - In 19-21:
 - 101k transitions
 - 1.7m attempts
 - \blacktriangleright \approx 6.1% success.

(Not as many exits as entries because of goals and period ends)

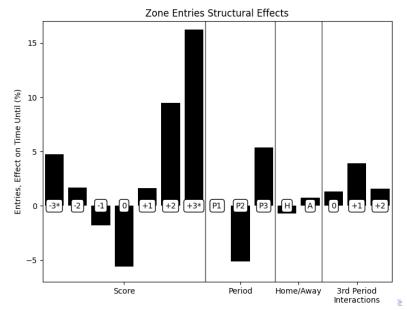

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Average Time To Transition

Fit a logistic regression model with ridge penalties for all non-constant terms, some extra penalties to pool the score effects properly, technical chicanery of various other kinds which need not detain us here.


▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Average Time To Transition


Structure (Exits)

Zone Exits Structural Effects

200

Structure (Entries)

Players: Best at Exits (19-21)

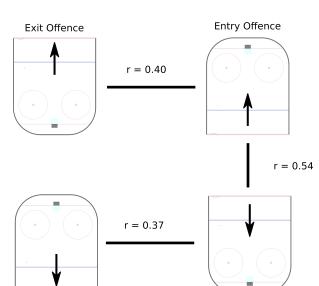
Player	Position	Impact on Time Until Exit
Mathew Barzal	F	-13.6%
Matthew Tkachuk	F	-12.9%
Nikolaj Ehlers	F	-11.9%
Adam Fox	D	-11.8%
Jaden Schwartz	F	-11.6%

Players: Best at Entries (19-21)

Player	Position	Impact on Time Until Entry
Mathew Barzal	F	-19.7%
Dmytro Timashov	F	-18.7%
Carl Grundström	F	-18.5% -18.0%
Travis Konecny	F	
Brandon Davidson	D	-17.2%

Players: Best at Preventing Exits (19-21)

Player	Position	Impact on Time Until Exit
Martin Frk	F	+14.3%
Nathan Bastian	F	+13.8%
Christian Wolanin	D	+12.9%
Phillip Danault	F	+11.6%
Mikko Rantanen	F	+11.1%


Players: Best at Preventing Entries (19-21)

Player	Position	Impact on Time Until Entry
Alex Steen	F	+24.0%
Casey Cizikas	F	+21.7%
Kailer Yamamoto	F	+21.6%
Jesse Puljujärvi	F	+20.7%
Kiefer Sherwood	F	+18.7%
Jared Spurgeon	D	+18.0%

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Correlations for Players

Exit Defence

Entry Defence

Want to measure impact on shifts after a given player's shift.

$$\mathcal{T} = \begin{bmatrix} D \text{ to } D & D \text{ to } N & D \text{ to } O \\ N \text{ to } D & N \text{ to } N & N \text{ to } O \\ O \text{ to } D & O \text{ to } N & O \text{ to } O \end{bmatrix}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Want to measure impact on shifts after a given player's shift.

$$\mathcal{T} = \begin{bmatrix} D \text{ to } D & D \text{ to } N & \mathbf{0} \\ N \text{ to } D & N \text{ to } N & N \text{ to } O \\ \mathbf{0} & O \text{ to } N & O \text{ to } O \end{bmatrix}$$

Want to measure impact on shifts after a given player's shift.

$$T = \begin{bmatrix} D \text{ to } D & D \text{ to } N & 0 \\ N \text{ to } D & N \text{ to } N & N \text{ to } O \\ 0 & O \text{ to } N & O \text{ to } O \end{bmatrix}$$

Want to measure impact on shifts after a given player's shift.

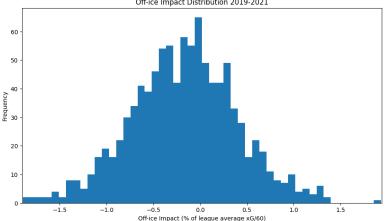
$$\mathcal{T} = \begin{bmatrix} D \text{ to } D & 2.5\% & 0\\ 6.1\% & N \text{ to } N & 6.1\%\\ 0 & 2.5\% & O \text{ to } O \end{bmatrix}$$

Want to measure impact on shifts after a given player's shift.

$$\mathcal{T}_{\rm McDavid} = \begin{bmatrix} {\rm D \ to \ D} & 2.7\% & 0 \\ 6.9\% & {\rm N \ to \ N} & 6.9\% \\ 0 & 2.4\% & {\rm O \ to \ O} \end{bmatrix}$$

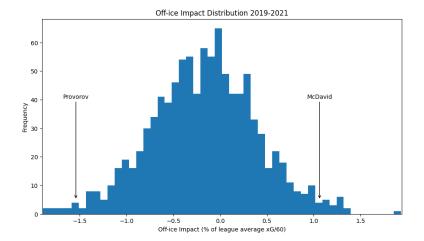
Want to measure impact on shifts after a given player's shift.

$$T_{\rm McDavid} = \begin{bmatrix} 97.7\% & 2.7\% & 0\\ 6.9\% & 86.2\% & 6.9\%\\ 0 & 2.4\% & 97.6\% \end{bmatrix}$$


Off-ice impact

- Apply this transition matrix many times to a league-average zone-start distribution
- Subtract off league average
- Multiply by known on-ice impact of starting shifts in those zones (from my other model)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

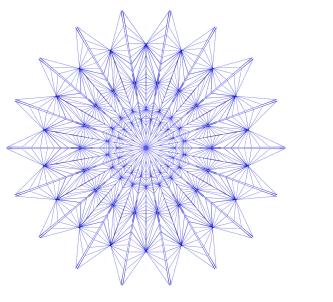

Off-ice impact in xG/60!

Off-ice Distribution

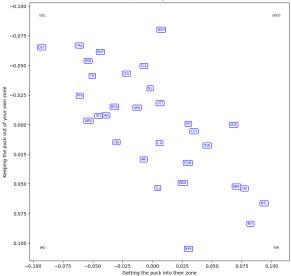
Off-ice Impact Distribution 2019-2021

Off-ice Distribution

Off-ice Impact

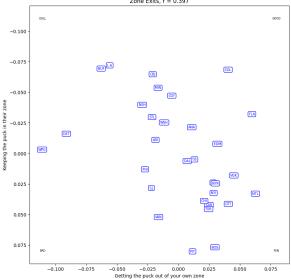

Skater impact on the $\underline{\text{following}}$ shift is about 10% of the impact on the $\underline{\text{current}}$ shift.

Future Work


 Synchronize diffuse impact (here) with direct-impact microstats (Sznajder).

(ロ)、(型)、(E)、(E)、 E) の(()

Thanks!


Team Entries

Zone Entries, r = 0.709

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

Team Exits

Zone Exits, r = 0.397