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Motivation

I Not all shots are equally likely to result in goals.
I Easy, everybody agrees

I How likely is it that a given shot will result in a goal?
I Hard, lots of yelling



First, the bad news

Input Unblocked 5v5 and 5v4 shots, 2016-2018 regular seasons.

Testing Unblocked 5v5 and 5v4 shots, 2018-2019 regular season so far.

What performs better: assuming that previous save percentages
predict future goal likelihoods, or assuming that all goalies are
identical?
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Log-loss

A thing happens which you said would happen with probability p.

I You score − log p

I The only fair way to evaluate predictions of probability.
I Lower is better, “less wrongness”

I 0 is “not at all wrong”

I Unblocked goal % in 2016-2018, all situations: 4.6%.
I Log-loss, 2018-2019 shots through Valentine’s: 0.1949

I Individual save percentage for all goalies with at least 100
shots faced and 4.6% otherwise.
I Log-loss, 2018-2019 shots through Valentine’s: 0.1950

Same story using only shots on goal, restricting to 5v5, both of
those things, no matter.



Repent

Save percentage is completely useless.
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We get something worth quoting by accounting for shot difficulty.
I All goalies average: 0.1837

I About 6% better than guessing.

I With goalie and shooter ability estimates: 0.1830
I About 1% better still.



How
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I Distance

I Geometry (“Impossible angles”)

I Vision of all concerned (screens)

I Sneaky passing and skating

I Shooter quality

I Goalie quality
I “Special plays”

I Breakaways
I 2-on-1s
I Rebounds



What affects goal likelihood?

I Distance

I Geometry (“Impossible angles”)

I Vision of all concerned (screens)

I Sneaky passing and skating

I Shooter quality

I Goalie quality
I “Special plays”

I Breakaways
I 2-on-1s
I Rebounds



What affects goal likelihood?

I Distance

I Geometry (“Impossible angles”)

I Vision of all concerned (screens)
I Sneaky passing and skating

I 5v4 as partial proxy

I Shooter quality

I Goalie quality
I “Special plays”

I Breakaways
I 2-on-1s

I “Rushes” as proxy

I Rebounds
I Or at least rebound shots
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Balance

How do we balance all these things to quantify how likely shots are
to become goals?

I Attach electrodes to the skulls of fans to detect excitement

I ♥ Regression ♥
Not just any regression: logistic ridge regression



Structure

If you pile up enough favourable things, a goal becomes likely.
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Probability, Odds, and Log-Odds

More x means more “favourable things”. What is x , really?

p(x) =
ex

1 + ex
1− p(x) =

1

1 + ex

Odds of a goal =
Probability of a goal

Probability of no goal
=

p(x)

1− p(x)
= ex

So x for a shot is the logarithm of the odds of that shot becoming
a goal: “log-odds”.



Logistic Regression

Trying to fit a regression:

I Targetting probabilities: Constrained to [0, 1], awkward

I Targetting log-odds: can be any real number, smooth.



Included factors

I Shooter ability (fixed)

I Goalie ability (fixed)
I Distance to the net, normalized to 89 feet (the blue line).

I Closer than 10 feet counts as 10 feet

I Visible net, normalized to 6 feet.
I Shot type

I Slap / Wrist-Snap / Tip-Deflection / Wraparound / Backhand

I Rebound shot indicator (within 3s)

I Rush shot indicator (within 4s)

I Power-play indicator (5v4)

I Leading / Trailing

I Constant
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Fitting

I Every set of values β for each parameter gives a prediction for
each shot s becoming a goal, p(s, β)

I Multiplying all these probabilities gives the likelihood
associated to a particular value of β.

I The best fit is the value of β that maximizes the likelihood

I Or, the logarithm of the likelihood, because products are
fidgety little things.

L =
∑
goals

log p(s, β) +
∑

not goals

log(1− p(s, β))
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Overfitting and its discontents

I Fitting a model with ordinary least squares fitting is prone to
matching the data too closely, being fooled by randomness.

I In particular, ability estimates for players with small amounts
of data can be outlandish.

I Disconnect arises because we know some things about these
players that the model does not.

I Solution:
I Tell it.
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Zero-biased regression

I One thing we know about NHL players, prior to looking at any
data about their play, is that they all play in the NHL.

I Add a mild assumption that deviation from average is “bad”.

I Instead of maximizing the likelihood L, maximize

L − 1

2
βTΛβ

where Λ is a matrix that encodes how sure we are, before we
start to look at data, that a given parameter “should” be
close to zero.

I Starting from this prior, every shot updates our assumptions
about the values of the factors involved, including the players.
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Zero-biased regression

I For players, start with a prior of zero impact with a standard
deviation of 0.1
I An impact on goal odds of around 10-15%, for good or for ill

I For other factors, start with a prior of zero impact with a
standard deviation of 1,000,000
I We have literally no idea and we’d like to be told, please.

I We can choose how much zero-bias we mix in, and where.

I For every parameter, we get a “posterior” distribution, with
its own mean and standard deviation, reflecting our new
certainty about the impact of each factor.



Results!!

Input data: Every unblocked 5v5 and 5v4 shot in the 730 days up
to and including January 1st, 2019.



Geometry
Unblocked, 5v5, non-rush, non-rebound wrist shots:



Historical
All unblocked shots, 5v5:



Shot Types



Score Effects



Score Effects

Leading teams take better shots, but trailing teams take more.
Net effect favours trailing teams.



Other Factors
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Strongest Recent Shooters

Player Team Impact on goal odds

Patrik Laine WPG +30%
Auston Matthews TOR +22%

Kyle Palmieri N.J +21%
Mikko Rantanen COL +21%
Nikita Kucherov T.B +20%



Patrik Laine



Auston Matthews



Alexander Ovechkin



Weakest Recent Shooters

Player Team Impact on goal odds

Brent Burns S.J -14%
Duncan Keith CHI -13%
Troy Stecher VAN -11%
Erik Karlsson OTT / S.J -11%

Oskar Klefbom EDM -11%



Weakest Recent Shooting Forwards

Player Team Impact on goal odds

Kevin Labanc S.J -10%
Dmitri Jaskin STL / WSH -9%

Brock McGinn CAR -8%
Mikko Koivu MIN -7%
Carl Hagelin PIT / L.A -7%
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Strongest Recent Goaltenders

Player Team Impact on goal odds

John Gibson ANA -22%
Carter Hutton STL / BUF -12%
Antti Raanta ARI -12%

Jonathan Quick L.A -11%
Ben Bishop DAL -11%

Updated: hockeyviz.com/goalies



John Gibson



Quality of competition

Some players are facing better quality opposition systematically
enough to be noticeable:

I Carter Hutton in 730 days up to Jan 30, 2019, faced nearly
2,000 shots with 1.3% higher odds of being goals purely
because of shooter talent.

I Jacob Chychrun took 200 shots which had 2.9% lower odds of
being goals purely because of the goalies he faced.



Weakest Recent Goaltenders

Player Team Impact on goal odds

Calvin Pickard COL / TOR / PHI / ARI +14%
Chad Johnson CGY / BUF / STL / ANA +14%
Jared Coreau DET +13%

Cam Ward CAR / CHI +10%
Maxime Lagace VGK +10%



Conclusions

I No version of individual save percentage has any value.

I Taking shot quality into account gives us a framework for
measuring shooting and goalie ability.



Historical Work

All up, a great deal of light but little heat.

I Shot difficulty:
I Kryzwicki, 2005

I Similar ideas sketched by Ryder the previous year.

I Schuckers, 2011 (updated 2016)

I Bayesian updating:
I MacDonald, 2013

I Simultaneous treatment of shooters and goalies:
I Ventura and Thomas, 2015



Future Work

I Screens

I Above-ice geometry

I Pre-shot movement

I Granularity of rush chances

I Aging

I Chaos



Thanks!


